Chapter 1 : Introduction to Embedded System

1-1 to 1-11

Syllabus : Definition, Characteristics, Classification, Applications. Design metrics of Embedded system and Challenges in optimization of metrics.

1.1	Characte	Characteristics and Design Metrics of Embedded System1-1		
	1.1.1	Design Metrics	1-2	
1.2	Characte	ristics, Quality Attributes and Optimization Challenges of Design Metric in Embedded System	1-4	
1.3	Characte	ristics of an RTOS	1-5	
1.4	Real Time	e Systems : Need for Real-Time Systems	1-6	
1.5	Real Time	e System's Requirements and Issues	1-8	
	1.5.1	Hard/Soft Real time Systems	1-8	
1.6	Challenge	es in Embedded System Design	1-9	
1.7	Exam Pac	ck (Review and University Questions)	1-11	

Module 2

Chapter 2: Embedded Hardware Elements

2-1 to 2-79

Syllabus : Features of Embedded cores- μC, ASIC, ASSP, SoC, FPGA, RISC and CISC cores. Types of memories. Case Study: ARM Cortex-M3 Features, Architecture, Programmer's model, Special Registers, Operating Modes and States, MPU, Memory map and NVIC. Low power - Need and techniques. Case study of Low Power modes in

Cortex-M3. Communication Interfaces: Comparative study of Serial communication Interfaces -RS-232, RS-485, SPI, I2C, CAN, USB (v2.0), Bluetooth, Zig-Bee. (Frame formats of above protocols are not expected). Selection Criteria of Sensors and Actuators

2.1	Embedde	ed Core	2-1
	2.1.1	Microprocessor and Microcontroller	2-1
	2.1.2	Digital Signal Processors (DSP) and Application Specific Processor (ASP)	2-3
	2.1.3	System On Chip (SOC)	2-5
	2.1.4	IP Core	2-6
	2.1.5	Low Power Features	2-7
	2.1.6	Idle Mode	2-7
	2.1.7	Termination / Exit from Idle Mode	2-8
	2.1.8	Power Down or Sleep Mode	2-9
	2.1.9	Termination from Power Down Mode	2-9
2.2	Reduced	Instruction Set Computer Principles	2-9
	2.2.1	RISC versus CISC	2-10
	2.2.2	RISC Properties	2-10

	2.2.3	Register Window	2-10
	2.2.4	Miscellaneous Features or Advantages of RISC Systems	2-11
	2.2.5	Risc Shortcomings	2-13
	2.2.6	ON-Chip Register File versus Cache Evaluation	2-14
	2.2.7	FPGA and CPLD	2-14
2.3	Memory		2-15
	2.3.1	Data Memories : SRAM and DRAM	2-15
	2.3.2	Program Memories	2-17
2.4	Sensors	/Input Devices (Resistive, Optical, Position, Thermal, Acceleration/ Gravity, Touch-Screen)	2-17
2.5	Actuato	rs/Output Devices (Solenoid Valves, Relay/ Switch, Opto-couplers, 16×2 Alphanumeric Display)	2-17
2.6	Commu	nication Interface	2-18
2.7	Embedd	ed Firmware (Boot-loader, RTOS, Drivers, Application Programs)	2-18
2.8	PCB and	Passive Components	2-18
2.9	Safety, F	teliability, Environmental, EM-Radiation Issues and Ethical Practice	2-18
2.10	Power S	upply Considerations in Embedded Systems	2-19
	2.10.1	Power-Supply and Oscillators	2-19
	2.10.2	Power Supply	2-19
	2.10.3	Oscillators	2-19
	2.10.4	Battery Technology and Solar Operation	2-20
2.11	PWM Ge	neration	2-20
2.12	Supervi	sory Circuits	2-21
	2.12.1	Reset Circuit	2-21
2.13	Commu	nication Interfaces	2-22
	2.13.1	Introduction of Communication Interfaces	2-22
	2.13.2	Types of Communication Systems	2-22
	2.13.3	Serial Transmission Formats	2-23
	2.13.3(A	.) Asynchronous Data Transfer	2-23
	2.13.3(B	Synchronous Data Transfer	2-24
2.14	Serial Pe	eripheral Interface (SPI) Bus	2-24
2.15	SCI (RS	232, RS 485)	2-26
	2.15.1	RS 232 Standard	2-26
	2.15.2	RS 485	2-28
	2.15.2(A	.) RS - 232 VS RS - 485	2-30

*

2.16	I ² C		2-31
	2.16.1	Interfacing I2C EEPROM with LPC2148	2-31
2.17	Controlle	r Area Network (CAN) Protocol	2-31
	2.17.1	Features of CAN Standard	2-32
	2.17.2	CAN Message Format	2-32
2.18	Field-bus	(Profibus)	2-33
	2.18.1	Application Layer	2-33
	2.18.2	Data Link Layer	2-33
2.19	USB (v2.0))	2-34
	2.19.1	Features of USB	2-34
	2.19.2	USB Transfers	2-36
	2.19.3	USB Commands	2-37
2.20	Bluetootl	1	2-39
2.21	Zig-Bee		2-39
	2.21.1	Interfacing ZIGBEE	2-39
2.22	Introduct	tion to Wireless Sensor Networks	2-41
2.23	Case Stud	ly: ARM Cortex-M3	2-42
2.24	Comparis	son of ARM-v7-A (CortexA8), ARM-v7-R (CortexR4), ARM-v7-M (Cortex-M3)	2-43
	2.24.1	Cortex-A Series	2-43
	2.24.2	Cortex-R Series	2-43
	2.24.3	Cortex-M Series	2-44
	2.24.4	† Introduction	2-44
	2.24.4(A)	Features of LPC1768	2-45
	.24.4(B)	† Applications	2-48
	2.24.4(C)	† Block Diagram of LPC1768	2-48
	2.24.4(D)	† Functional Description	2-60
	2.24.4(D)	.1Architectural Overview	2-60
	2.24.4(D)	.2ARM Cortex-M3 Processor	2-60
	2.24.4(D)	.3 Memory Map	2-60
	2.24.5	† Architectural Overview	
	2.24.6	† ARM Cortex-M3 Processor	2-62
	2.24.7	Special Registers in Cortex-M3	2-62
	.24.4(B) 2.24.4(C) 2.24.4(D) 2.24.4(D) 2.24.4(D) 2.24.4(D) 2.24.4(D) 2.24.5 2.24.6	† Applications	2-48 2-48 2-60 2-60 2-60 2-60 2-61 2-62

2.25	Memory Access and Addressing Modes		2-62
	2.25.1	Addressing Modes for Data Processing Operands (i.e. op1)	2-63
	2.25.2	Addressing Modes for Memory Access Operands	2-64
2.26	Exception	ons/Interrupts	2-66
2.27	Processo	or Modes	2-68
2.28	The ARM	1 Programmers Model	2-70
2.29	Program	Status Registers	2-72
2.30	Barrel Sl	nifter	2-76
2.31	Data Typ	pes	2-77
2.32	Exam Pa	ck (Review and University Questions)	2-77
		we take a	

Chapter 3: Embedded Software

3-1 to 3-62

Syllabus: Program Modelling concepts: DFG, CDFG, FSM. Real-time Operating system: Need of RTOS in Embedded system software and comparison with GPOS. Task, Task states, Multi-tasking, Task scheduling, and algorithms-Preemptive SJF, Round-Robin, Priority, Rate Monotonic Scheduling, Earliest Deadline First Inter-process

communication: Message queues, Mailbox, Event timers. Task synchronization: Need, Issues- Deadlock, Race condition, live Lock, Solutions using Mutex, Semaphores. Shared Data problem, Priority inversion

3.1	Foregrou	nd/Background Systems	3-1
3.2	Program	Modeling Concepts	3-1
	3.2.1	Program Modeling Concepts : DFG, State Machine Programming Models (FSM, Petri-net), Modeling for	Multi-
		Processor Systems, UML	3-1
	3.2.2	Data Flow Graph (DFG) Model	3-2
	3.2.3	State Machine Model	3-2
	3.2.4	Sequential Program Model	3-3
	3.2.5	Concurrent Process Model	
	3.2.6	Petri Nets Model	3-6
	3.2.7	Unified Modelling	3-6
	3.2.7(A)	Activity Diagram	
	3.2.7(B)	Class Diagram	3-7
3.3	Embedde	ed C-programming Concepts	3-8
3.4	Assembly	Language Based Embedded Software Development	3-8
	3.4.1	Source Code to Object Code Translation	3-9
	3.4.2	Advantage of Assembly Language Based Development	3-10

	3.4.3	Disadvantages of Assembly Language Based Development	3-11
3.5	High Lev	vel Language Based Embedded Software Development	3-11
	3.5.1	Comparison between Object Oriented and Procedural Language	3-12
	3.5.2	Advantages of High Level Based Embedded Software Development	3-13
3.6	Need of	an RTOS in Embedded System	3-13
3.7	RTOS Vs	GPOS	3-15
3.8	The Real	l Time Kernel	3-16
	3.8.1	The Scheduler and its Policies	3-16
	3.8.2	Services	3-18
3.9	Characte	eristics of an RTOS	3-20
3.10	Real Wo	rld Issues	3-21
3.11	Concept	s of Tasks, Process and Threads	3-21
	3.11.1	Types of Tasks	3-22
	3.11.2	Thread	3-24
3.12	Multitas	king	3-25
	3.12.1	Types of Multitasking	3-25
3.13	Task Sch	neduling	3-26
	3.13.1	Non-preemptive Scheduling	3-27
	3.13.1(A	.) First - Come - First - Served (FCFS) / FIFO Scheduling	3-27
	3.13.1(B) Last - Come - First - Served (LCFS) / LIFO Scheduling	3-29
	3.13.1(C) Shortest Job First (SJF) Scheduling	3-30
	3.13.2	Priority Based Scheduling	3-32
	3.13.3	Preemptive Scheduling	3-34
	3.13.3(A) Round Robin (RR) Scheduling	3-35
	3.13.3(B	Priority Based Scheduling	3-35
	3.13.4	Classification of Real-Time Task scheduling Algorithms	3-37
	3.13.4(A) Clock-Driven Scheduling	3-38
	3.13.4(B	Event-Driven Scheduling	3-39
	3.13.4(C) Hybrid Scheduling	3-39
3.14	Task Ma	nagement	3-42
3.15	Inter-Pro	ocess Communication (IPC) and Synchronization	3-43
	3.15.1	Queue	3-43
	3.15.2	Circular Queue	3-44
	3.15.3	List	3-44

	3.15.4	Message Queues	3-45
	3.15.5	Mail Boxes	3-46
	3.15.6	Pipes	3-46
	3.15.7	Shared Memory	3-47
	3.15.8	Event or Signal Function	3-48
	3.15.9	Remote Procedure Call (RPC) and Sockets	3-48
	3.15.10	Task Synchronization	3-48
	3.15.11	Priority Inversion	3-51
	3.15.11(A) Solutions to Priority Inversion	
	3.15.12	Semaphore Operations	3-53
	3.15.13	Shared Data Problem and Techniques to Overcome	3-53
	3.15.14	Dead Locks	
3.16	Need of a	n RTOS in Embedded System	3-58
3.17	Exam Pac	ck (Review and University Questions)	3-59

Chapter 4: Introduction to FreeRTOS

4-1 to 4-8

Syllabus : FreeRTOS Task Management features, Resource Management features, Task Synchronization features, Event Management features, Calculation of CPU Utilization of an RTOS, Interrupt Management features, Time Management features.

4.1	Introduct	on to FreeRTOS4-	1
4.2	RTOS Mar	nagement Features4-2	2
4.3	Resource	Management Features4-2	2
4.4	Task Sync	hronization Features4-3	3
	4.4.1	FreeRTOS Recursive Mutexes	4
4.5	Event Mai	nagement Features4-4	4
		Event Bits (Event Flags)	
	4.5.2	Event Groups4-	4
	4.5.3	Event Group and Event Bits Data Types4-	5
		Challenges in Implementing Event Groups4-	
4.6	Calculatio	n of CPU Utilization of an RTOS4-0	6
4.7	Interrupt	Management Features4-0	6
4.8		agement Features4-	
4.9	Exam Pac	k (Review Questions)4-8	8

7

Chapter 5: Testing and Debugging Methodology

5-1 to 5-28

Syllabus : Testing & Debugging : Hardware testing tools, Boundary-scan/JTAG interface concepts, Emulator. Software Testing tools, Simulator, Debugger. White-Box and Black-Box testing.

5.1	GNU Deb	ougger (gdb)	5-1
	5.1.1	GDB : The GNU Debugger	5-2
	5.1.1(A)	Background	5-2
	5.1.1(B)	Introduction to the GNU Debugger	5-2
	5.1.1(C)	GDB Commands	5-3
	5.1.1(D)	GDB Session : A basic example	5-6
	5.1.1(E)	GDB in Embedded Environment	5-9
	5.1.1(F)	Debugging a Core Dump	5-10
	5.1.2	Data Display Debugger	5-12
	5.1.3	cbrowser/cscope	5-13
	5.1.4	Tracing and Profiling Tools	5-13
	5.1.4(A)	strace	5-13
	5.1.4(B)	ltrace	5-16
	5.1.4(C)	ps	5-17
	5.1.4(D)	Тор	5-19
	5.1.4(E)	mtrace	5-20
	5.1.4(F)	dmalloc	5-20
	5.1.4(G)	Kernel Oops	5-20
5.2	Testing a	and Debugging	5-21
	5.2.1	Boundary-Scan/JTAG Interface Concepts	5-21
5.3	Compari	son between Computation Models, Languages and Implementation	5-22
	5.3.1	Program Validation and Testing	5-23
	5.3.2	White - Box Testing	5-23
	5.3.3	Black - Box Testing	5-25
5.4	Debuggir	ng Methodologies	5-25
	5.4.1	Firmware (Embedded Software Debugging)	5-25
	5.4.1(A)	Simulator Based Firmware Debugging	5-25
	5.4.1(B)	In-Circuit (Hardware) Emulators Based Firmware Debugging	5-26
	5.4.1(C)	Monitor Program Based Firmware Debugging	5-26
	5.4.1(D)	On Chip Firmware Debugging	5-27

	5.4.2	Hardware Debugging	5-27
	5.4.2(A)	Multimeter	5-28
	5.4.2(B)	Oscilloscope and Logic Analyser	5-28
5.5	Exam Pac	k (Review and University Questions)	5-28

Chapter 6: System Integration (Case Studies)

6-1 to 6-17

Syllabus : Embedded Product Design Life-Cycle (EDLC)- Waterfall Model. Hardware-Software Co-design. Case studies for Automatic Chocolate Vending Machine, Washing Machine, Smart Card, highlighting : (i) Specification requirements (choice of components), (ii) Hardware architecture (iii) Software architecture.

6.1	Embedded Product Design Life-Cycle (EDLC)		6-1	
	6.1.1	Fundamentals of Design and Development	6-1	
	6.1.2	EDLC Phases	6-1	
6.2	Hardware-Software Co-design		6-9	
	6.2.1	Modelling of Embedded System Development Life Cycle	6-9	
6.3	Soft Real-time		6-11	
	6.3.1	Automated Vending Machine	6-11	
	6.3.2	Requirement Analysis	6-11	
	6.3.3	Hardware Block Diagram	6-11	
	6.3.4	System Model (FSM / UML)	6-12	
	6.3.5	Software Architecture (Modules, Drivers)	6-13	
	6.3.6	Component/Hardware Selection	6-13	
	6.3.7	Vegetable / Chocolate Vending	6-14	
6.4	Waching Machine Control		6-14	
	6.4.1	Requirement Analysis	6-14	
	6.4.2	Hardware Block Diagram	6-14	
	6.4.3	System Model (FSM / UML)	6-15	
	6.4.4	Software Architecture (Modules, Drivers)	6-15	
	6.4.5	Component/Hardware Selection	6-15	
6.5	Smart Card		6-16	
	6.5.1	Software Architecture (Modules, Drivers)	6-17	
6.6	Exam P	Exam Pack (University and Review Questions)6-1		